p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22⋊C4⋊4C8, C2.13(C8×D4), (C2×C8).327D4, C23.7(C2×C8), C2.3(C8⋊6D4), C2.7(C8⋊9D4), C24.60(C2×C4), C22.101(C4×D4), (C2×C4).37M4(2), C4.191(C4⋊D4), C4.84(C4.4D4), C22.32(C8○D4), C22.42(C22×C8), (C23×C4).22C22, (C22×C8).46C22, C4.48(C42⋊2C2), C2.C42.11C4, (C2×C42).998C22, C23.271(C22×C4), C22.7C42⋊8C2, C22.53(C2×M4(2)), (C22×C4).1633C23, C2.10(C42.12C4), C22.59(C42⋊C2), C4.140(C22.D4), C2.5(C42.7C22), C2.4(C24.C22), (C2×C4×C8)⋊9C2, (C2×C4⋊C8)⋊14C2, (C2×C4).21(C2×C8), (C2×C4).1535(C2×D4), (C4×C22⋊C4).15C2, (C2×C22⋊C4).30C4, (C2×C22⋊C8).24C2, (C2×C4).939(C4○D4), (C22×C4).123(C2×C4), SmallGroup(128,655)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊C4⋊4C8
G = < a,b,c,d | a2=b2=c4=d8=1, cac-1=ab=ba, dad-1=ac2, bc=cb, bd=db, cd=dc >
Subgroups: 252 in 146 conjugacy classes, 68 normal (52 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C24, C2.C42, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C22×C8, C23×C4, C22.7C42, C4×C22⋊C4, C2×C4×C8, C2×C22⋊C8, C2×C4⋊C8, C22⋊C4⋊4C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C2×C8, M4(2), C22×C4, C2×D4, C4○D4, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C22×C8, C2×M4(2), C8○D4, C24.C22, C42.12C4, C42.7C22, C8×D4, C8⋊9D4, C8⋊6D4, C22⋊C4⋊4C8
(1 52)(2 6)(3 54)(4 8)(5 56)(7 50)(9 28)(10 19)(11 30)(12 21)(13 32)(14 23)(15 26)(16 17)(18 42)(20 44)(22 46)(24 48)(25 47)(27 41)(29 43)(31 45)(33 37)(34 61)(35 39)(36 63)(38 57)(40 59)(49 53)(51 55)(58 62)(60 64)
(1 40)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 45)(18 46)(19 47)(20 48)(21 41)(22 42)(23 43)(24 44)(49 64)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)
(1 29 56 19)(2 30 49 20)(3 31 50 21)(4 32 51 22)(5 25 52 23)(6 26 53 24)(7 27 54 17)(8 28 55 18)(9 58 42 35)(10 59 43 36)(11 60 44 37)(12 61 45 38)(13 62 46 39)(14 63 47 40)(15 64 48 33)(16 57 41 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,52)(2,6)(3,54)(4,8)(5,56)(7,50)(9,28)(10,19)(11,30)(12,21)(13,32)(14,23)(15,26)(16,17)(18,42)(20,44)(22,46)(24,48)(25,47)(27,41)(29,43)(31,45)(33,37)(34,61)(35,39)(36,63)(38,57)(40,59)(49,53)(51,55)(58,62)(60,64), (1,40)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,29,56,19)(2,30,49,20)(3,31,50,21)(4,32,51,22)(5,25,52,23)(6,26,53,24)(7,27,54,17)(8,28,55,18)(9,58,42,35)(10,59,43,36)(11,60,44,37)(12,61,45,38)(13,62,46,39)(14,63,47,40)(15,64,48,33)(16,57,41,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,52)(2,6)(3,54)(4,8)(5,56)(7,50)(9,28)(10,19)(11,30)(12,21)(13,32)(14,23)(15,26)(16,17)(18,42)(20,44)(22,46)(24,48)(25,47)(27,41)(29,43)(31,45)(33,37)(34,61)(35,39)(36,63)(38,57)(40,59)(49,53)(51,55)(58,62)(60,64), (1,40)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,29,56,19)(2,30,49,20)(3,31,50,21)(4,32,51,22)(5,25,52,23)(6,26,53,24)(7,27,54,17)(8,28,55,18)(9,58,42,35)(10,59,43,36)(11,60,44,37)(12,61,45,38)(13,62,46,39)(14,63,47,40)(15,64,48,33)(16,57,41,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,52),(2,6),(3,54),(4,8),(5,56),(7,50),(9,28),(10,19),(11,30),(12,21),(13,32),(14,23),(15,26),(16,17),(18,42),(20,44),(22,46),(24,48),(25,47),(27,41),(29,43),(31,45),(33,37),(34,61),(35,39),(36,63),(38,57),(40,59),(49,53),(51,55),(58,62),(60,64)], [(1,40),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,45),(18,46),(19,47),(20,48),(21,41),(22,42),(23,43),(24,44),(49,64),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63)], [(1,29,56,19),(2,30,49,20),(3,31,50,21),(4,32,51,22),(5,25,52,23),(6,26,53,24),(7,27,54,17),(8,28,55,18),(9,58,42,35),(10,59,43,36),(11,60,44,37),(12,61,45,38),(13,62,46,39),(14,63,47,40),(15,64,48,33),(16,57,41,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4H | 4I | ··· | 4P | 4Q | ··· | 4V | 8A | ··· | 8P | 8Q | ··· | 8X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C8 | D4 | M4(2) | C4○D4 | C8○D4 |
kernel | C22⋊C4⋊4C8 | C22.7C42 | C4×C22⋊C4 | C2×C4×C8 | C2×C22⋊C8 | C2×C4⋊C8 | C2.C42 | C2×C22⋊C4 | C22⋊C4 | C2×C8 | C2×C4 | C2×C4 | C22 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 4 | 4 | 16 | 4 | 4 | 8 | 8 |
Matrix representation of C22⋊C4⋊4C8 ►in GL5(𝔽17)
1 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 8 |
0 | 0 | 0 | 9 | 0 |
G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,16,0],[2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,9,0,0,0,8,0] >;
C22⋊C4⋊4C8 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_4\rtimes_4C_8
% in TeX
G:=Group("C2^2:C4:4C8");
// GroupNames label
G:=SmallGroup(128,655);
// by ID
G=gap.SmallGroup(128,655);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,58,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^4=d^8=1,c*a*c^-1=a*b=b*a,d*a*d^-1=a*c^2,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations